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TOPIC 23 - TOPOLOGICAL SPACES

PAUL L. BAILEY

Abstract. We define topological spaces, which are sets together with the ad-

ditional structure provided by a collection of open sets. We give examples and

develop their basic properties.

Contents

1. Topological Spaces 2
1.1. Topological Spaces 2
1.2. Neighborhoods 3
1.3. Refinements 6
2. Continuous Functions 8
2.1. Continuous Functions 8
2.2. Open and Closed Maps 9
2.3. Homeomorphisms 9
3. Subspaces, Products and Quotients 10
3.1. Subspaces 10
3.2. Products 11
3.3. Quotients 11
4. Connectedness 11
4.1. Clopen Sets 11
4.2. Separation 12
4.3. Connectedness 12
4.4. Components 14
4.5. Dedekind Property 14
4.6. Path Connectedness 14
5. Compactness 15
5.1. Covers 15
5.2. Finite Intersection Property 16
5.3. Sequential Compactness 16
6. Separation 17
6.1. Separation Axioms 17
6.2. Closed Point Spaces 17
6.3. Hausdorff Spaces 18
6.4. Regular Spaces 20
6.5. Normal Spaces 20

Date: January 20, 2020.

1



2

1. Topological Spaces

1.1. Topological Spaces.

Definition 1. A topological space is a set X together with a collection of subsets
T ⊂ P(X) such that

(T1) ∅ ∈ T and X ∈ T;
(T2) U ⊂ T ⇒ ∪U ∈ T;
(T3) U ⊂ T and U finite ⇒ ∩U ∈ T.

The collection T is called a topology on X. A subset A ⊂ X is called open if A ∈ T,
and is called closed if X rA ∈ T.

Remark 1. To rephrase (T2) and (T3), the union of any number of open sets
is open, and the intersection of finitely many open sets is open. By DeMorgan’s
Laws, the intersection of any number of closed sets is closed, and the union of
finitely many closed sets is closed.

Example 1. Let (X, d) be a metric space. Let a ∈ X and r > 0. Recall that the
ball of radius r around a is

Br(a) = {x ∈ X | d(x, a) < r}.
A subset U ⊂ X is called open if, for every u ∈ U , there exists r > 0 such that
Br(u) ⊂ U .

Let T denote the set of all subsets of X which are open. Then T is a topology
on X, called the metric topology, and (X,T) is a topological space. In this way,
topological spaces generalize metric spaces.

Example 2. Let X be a set and let T = P(X). Then (X,T) is a topological space
and T is called the discrete topology on X.

The discrete topology may be obtained from a metric. For example, if we set
d(x, x) = 0 and d(x, y) = 1 if x 6= y, then metric topology is the discrete topology
on X.

Example 3. Let X be a set and let T = {∅, X}. Then (X,T) is a topological
space and T is called the trivial topology on X.

Example 4. Let X be a set and let T = {A ⊂ X | X rA is finite }. Then (X,T)
is a topological space and T is called the cofinite topology on X.

Example 5. Let X be a set. A tower of subsets of X is a collection T ⊂ P(X)
which contains the empty set and the entire set and is totally ordered by inclusion.

Let X be a set and T a tower of subsets of X. Then T is a topology on X, called
a tower topology.

Example 6. Let X be a totally ordered set. For a ∈ X, set

La = {x ∈ X | x < a} and Ra = {x ∈ X | x > a}.
Set

L = {La | a ∈ X} ∪ {∅, X} and R = {Ra | a ∈ X} ∪ {∅, X}.
Then L is a topology on X, called the left order topology, and R is a topology on
X, called the right order topology.
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1.2. Neighborhoods.

Definition 2. Let X be a topological space and let x ∈ X. A neighborhood of x is
a subset N ⊂ X such that there exists an open set U ⊂ N with x ∈ U .

Remark 2. Let X be a topological space and let x ∈ X. If U is an open set
containing x, then U is itself a neighborhood of x, and is referred to as an open
neighborhood. Thus there exists at least one neighborhood of x; indeed, X is open
and contains x.

Definition 3. A deleted neighborhood of x is a set of the form N r {x}, where N
is a neighborhood of x.

Remark 3. Let X be a topological space and let x ∈ X. If N r {x} is a deleted
neighborhood of x which does not intersect A, then either N does not intersect A
or there is an open set U ⊂ N such that x is the only element of A in that open
set.

1.2.1. Closure Points.

Definition 4. Let X be a topological space and let A ⊂ X. A closure point of A
is a point x ∈ X such that every neighborhood of x intersects A. The closure of
A ⊂ X is the set of closure points of A and is denoted A.

Remark 4. Clearly every neighborhood of x intersects A if and only if every open
neighborhood of x intersects A.

Proposition 1. Let X be a topological space. Let A,B ⊂ X. Then

(a) ∅ = ∅;
(b) A ⊂ A;

(c) A = A;

(d) (A ∪B) = A ∪B.

Proof. If x ∈ X, then X is a neighborhood of x which does not intersect ∅; thus,
∅ has no points of closure, so ∅ = ∅.

If a ∈ A, then a is in the intersection of any neighborhood of a with A; thus
A ⊂ A.

From (b) we have A ⊂ A. Suppose that x ∈ A. Then every open neighborhood
of x intersects A. For any open neighborhood U of x, let y ∈ U ∩ A. Then every
open neighborhood of y intersects A. Since U is an open neighborhood of y, U
intersects A. Thus x ∈ A.

Suppose that x /∈ A ∪ B. Then there exists a neighborhoods U, V of x such
that U ∩ A = ∅ and V ∩ B = ∅. Then U ∩ V is a neighborhood of x such that
(U ∩ V ) ∩ (A ∪B) = ∅. So x /∈ (A ∪B). Therefore (A ∪B) ⊂ A ∪B.

Suppose that x ∈ A∪B. Then every open neighborhood of x intersects A or B,
so it intersects A ∪B. Thus x ∈ A ∪B, so A ∪B ⊂ (A ∪B). �

Proposition 2. Let X be a topological space. If A ⊂ B ⊂ X, then A ⊂ B.

Proof. Let y ∈ A. Then every neighborhood of y intersects A. Since A ⊂ B, every
neighborhood of y intersects B. Thus y ∈ B. �
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Proposition 3. Let X be a topological space and A ⊂ X. Then A is the intersection
of the closed sets of X which contain A.

Proof. Let F denote the set of all closed sets which contain A. We wish to show
that A = ∩F.

We select x ∈ X. If x /∈ ∩F, then x /∈ F for some closed set F which contains A.
If U = XrF , then U is open, so U is a neighborhood of x which does not intersect
A. Thus x is not a closure point of A; that is, x /∈ A.

On the other hand, if x /∈ A, there is an open neighborhood U of x which does
not intersect A. If F = X r U , then x /∈ F , but F is a closed set which contains
A, so F ∈ F. Thus x /∈ ∩F. �

Proposition 4. Let X be a topological space and A ⊂ X. Then A is closed if and
only if A = A.

Proof. Suppose that A is closed. Then U = X r A is open. If x /∈ A, then U is
a neighborhood of x which does not intersect A, so x is not a closure point of A;
that is, x /∈ A. This shows that A ⊂ A, and since we already know that A ⊂ A, we
conclude that A = A.

Conversely, suppose that A = A; we wish to show that the complement of A is
open. Thus let x ∈ X r A. Then x /∈ A, so there is a neighborhood U of x which
does not intersect A. So, x is interior to X r A, which shows that X r A is open,
so A is closed. �

1.2.2. Interior Points.

Definition 5. Let X be a topological space and let A ⊂ X. An interior point of
A is a point x ∈ X such that A contains a neighborhood of x. The interior of A is
the set of interior points of A and is denoted A◦.

Proposition 5. Let X be a topological space and let A ⊂ X. Then A◦ is the union
of the open sets contained in A.

Proposition 6. Let X be a topological space and let A ⊂ X. Then A is open if
and only if A = A◦.

Proposition 7. Let X be a topological space and let A ⊂ X. Then

(a) A◦ = X r (X rA);
(b) A = X r (X rA)

◦
;

(c) A ⊂ B ⇒ A◦ ⊂ B◦;
(d) (A◦)

◦
= A◦;

(e) (A ∩B)
◦

= A◦ ∩B◦.
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1.2.3. Boundary Points.

Definition 6. Let X be a topological space and let A ⊂ X. A boundary point of
A is a point x ∈ X such that every neighborhood of x intersects A and XrA. The
boundary of A is the set of boundary points of A and is denoted ∂A.

Proposition 8. Let X be a topological space and let A ⊂ X. Then

(a) ∂A = ArA◦;

(b) ∂A = A ∩ (X rA);
(c) ∂A = ∂(X rA);
(d) A = A ∩ ∂A;
(e) A◦ = Ar ∂A;
(f) ∂(∂A) ⊂ ∂A;
(g) A ∩B ∩ ∂(A ∩B) = A ∩B ∩ (∂A ∪ ∂B).

Proposition 9. Let X be a topological space and let A ⊂ X. Then ∂A = ∅ if and
only if A is both open and closed.

Proof.
(⇒) Suppose that ∂A = ∅. Then A ⊂ A◦. But A◦ ⊂ A ⊂ A, so A◦ = A = A.

Thus A is both open and closed.
(⇐) Suppose that A is both open and closed. Then A◦ = A = A, so ∂A =

ArA◦ = ∅. �

1.2.4. Accumulation Points.

Definition 7. Let X be a topological space and let A ⊂ X. An accumulation point
of A is a point x ∈ X such that every deleted neighborhood of x intersects A. The
derived set of A is the set of accumulation points of A, and is denoted A′.

Proposition 10. Let X be a topological space and A,B ⊂ X.

(a) A ⊂ B ⇒ A′ ⊂ B′;
(b) (A ∪B)

′
= A′ ∪B′;

(c) A = A ∪A′.

Corollary 1. A subset of a topological space is closed if and only if it contains all
of its accumulation points.

1.2.5. Isolated Points.

Definition 8. Let X be a topological space and let A ⊂ X. An isolated point of A
is a point x ∈ A such that some deleted neighborhood of x is contained in X r A.
The set of isolated points of A is denoted A�.

Proposition 11. Let X be a topological space and A ⊂ X.

(a) A� ⊂ A;
(b) A� ⊂ ∂A;
(c) A = A′ tA�.
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1.3. Refinements.

1.3.1. Refinements.

Definition 9. Let X be a set and let S and T be topologies on X.
If S ⊂ T, we say that S is a courser topology than T and that T is a finer topology

than S.

Remark 5. The coarsest topology on a set is the trivial topology and the finest
topology on a set is the discrete topology.

Proposition 12. Let X be a set and let {Tα | α ∈ A} be a collection of topologies
on X. Then I = ∩α∈ATα is a topology on X.

Proof. Since the empty set and the entire set are in every topology, they are in the
intersection.

If U ⊂ I, then U ⊂ Tα for every α. Thus ∪U ∈ Tα for every α, so ∪U ∈ I.
If U ⊂ I, then U ⊂ Tα for every α. If U is a finite collection, ∩U ∈ Tα for every

α, so ∩U ∈ I. �

1.3.2. Generated Topologies.

Definition 10. Let X be a set and let A ∈ P(X).
The topology generated by A is the intersection of all the topologies on X which

contain A, and is denoted 〈A〉.

Remark 6. The topology generated by a collection A ⊂ P(X) is the coarsest
topology on X in which all of the sets in A are open.

1.3.3. Bases.

Definition 11. Let X be a set.
A basis for a topology on X is a collection of subsets B ⊂ P(X) such that

(B1) ∪B = X;
(B2) if B1, B2 ∈ B and p ∈ B1 ∩ B2, then there exists B3 ∈ B with p ∈ B3 and

B3 ⊂ B1 ∩B2.

Proposition 13. Let X be a set and let B be a basis for a topology on X. Let T

be the collection of unions of sets in B. Then T is a topology on X, and T = 〈B〉.

Proof. We consider the empty set to be the empty union, so ∅ ∈ T. By basis
property (B1), the entire set is in T. By definition of T, any union of sets in T is
also in T.

Let U1, U2 ∈ T. Since U1 and U2 are the unions of basis sets, for every p ∈ U1∩U2

there exist basis sets B1 ⊂ U1 and B2 ⊂ U2 such that p ∈ B1∩B2. By basis property
(2), there exists a basis set Bp ⊂ B1 ∩B2 ⊂ U1 ∩ U2 with p ∈ Bp. Then

U1 ∩ U2 =
⋂

p∈U1∩U2

{p} ⊂
⋂

p∈U1∩U2

Bp ⊂ U1 ∩ U2,

so U1 ∩ U2 =
⋂

p∈U1∩U2

Bp is open. �

Remark 7. Every topology on a set X has itself as a basis. Bases are not neces-
sarily unique.
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1.3.4. Subbases.

Definition 12. Let X be a set.
A subbasis for a topology on X is a collection of subsets S ⊂ P(X) such that the

collection of all finite intersections of sets in S form a basis for a topology on X.

Remark 8. Every basis is a subbasis.

Proposition 14. Let X be a set and let S ⊂ P(X). If ∪S = X, then S is a
subbasis for a topology on X. Let B be a basis which is the collection of all finite
intersections of sets in S. Then 〈S〉 = 〈B〉.

Proof. Basis property (B1) is given and basis property (B2) is obvious. The second
claim follows immediately from the first. �

Remark 9. If T is a topology on X, then S ⊂ P(X) is a subbasis for T if and only
if 〈S〉 = T.

1.3.5. Equivalent Bases.

Definition 13. Let X be a set.
Two subbases B1,B2 ⊂ P(X) are equivalent if they generate the same topology

on X.

Proposition 15. Let X be a set with bases B1 and B2. Then B1 and B2 are
equivalent if and only if for p1 ∈ B1 ∈ B1 there exists B2 ∈ B2 such that p1 ∈ B2 ⊂
B1 and for p2 ∈ B2 ∈ B2 there exists B1 ∈ B1 such that p2 ∈ B1 ⊂ B2.

Proof. Let T1 = 〈B1〉 and T2 = 〈B2〉. Let U ∈ T1. Then U = ∪α∈ABα for some
{B1,α | α ∈ A} ⊂ B1. For each p ∈ U there exists B1,α such that p ∈ B1,α. By
hypothesis there exists B2,α ∈ B2 such that p ∈ B2,α ⊂ B1,α. Thus U is the union
of such B2,α and in T2. Therefore T1 ⊂ T2. Similarly, T2 ⊂ T1. �

Proposition 16. Let X be a totally ordered set. For a ∈ X, let La = {x ∈ X |
x < a}. and let Ra = {x ∈ X | x > a}. Then S = {La | a ∈ X} ∪ {Ra | a ∈ X} is
a subbasis for a topology on X.

For a, b ∈ X, let Ia,b = {x ∈ X | a < x < b}. Let B = {Ia,b | a, b ∈ X}. Then
B forms the basis for a topology on X which is generated by the subbasis S. The
topology generated by B is called the total order topology on X.

Remark 10. The standard topology on the real numbers is a total order topology.
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2. Continuous Functions

2.1. Continuous Functions.

Definition 14. Let X and Y be spaces and f : X → Y .
We say that f is continuous if for every open set V ⊂ Y , f−1(V ) ⊂ X is open.

Definition 15. Let X and Y be spaces and f : X → Y and let x0 ∈ X.
We say that f is continuous at x0 if for every neighborhood V of f(x0) there

exists a neighborhood U of x0 such that f(U) ⊂ V .

Proposition 17. Let X and Y be spaces and f : X → Y . Then f is continuous if
and only if f is continuous at every point in X.

Proof. Suppose that f is continuous, and let x0 ∈ X. Let V be a neighborhood of
y0 = f(x0). Then U = f−1(V ) is a neighborhood of x0 which maps into V .

Conversely, suppose that f is continuous at every point in X. Let V ⊂ Y be
open and let U = f−1(V ). For every x ∈ U , V is a neighborhood of f(x), so there
exists an open neighborhood Ux of x such that f(Ux) ⊂ V . But then Ux ⊂ U , and
U is the union of such sets; thus U is open, and f is continuous. �

Proposition 18. Let X and Y be spaces and f : X → Y . If X has the discrete
topology or Y has the trivial topology then f is continuous.

Proposition 19. Let X and Y be spaces and f : X → Y . Then f is continuous if
and only if for every closed set F ⊂ Y , f−1(F ) ⊂ X is closed.

Proof.
(⇒) Suppose that f is continuous. Let F ⊂ Y be closed. Let U = Y r F ;

then U is open, so f−1(U) is open, so X r f−1(U) is closed. But X r f−1(U) =
f−1(Y r U) = f−1(F ).

(⇐) Suppose that for every closed set F ⊂ Y , f−1(F ) is closed in X. Let
U ⊂ Y be open; then Y r U is closed in Y , so f−1(Y r U) is closed in X. Thus
f−1(U) = X r f−1(Y r U) is open in X. Therefore f is continuous. �

Proposition 20. Let X and Y be spaces and f : X → Y . Then f is continuous if
and only if for every A ⊂ X, f(A) ⊂ f(A).

Proof.
(⇒) Suppose that f is continuous. Let A ⊂ X and let y ∈ f(A). Then y = f(x)

for some point x ∈ (A). Let V be an open neighborhood of y. Then f−1(V ) is
open in X and contains x. Thus there exists a ∈ A ∩ f−1(V ), and f(a) ∈ V ; that

is, V intersects f(A). Therefore y ∈ f(A), and f(A) ⊂ f(A).

(⇐) Suppose that for every A ⊂ X, f(A) ⊂ f(A).
Let F ⊂ Y be closed and let A = f−1(F ). Then f(A) = F , and since F is closed,

f(A) = F . Thus F = f(A) ⊂ f(A) ⊂ f(A) = F . This shows that f(A) = F , so
A ⊂ f−1(F ) = A; since A ⊂ A, we see that A = A, so A is closed. Therefore f is
continuous. �
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Proposition 21. Let X and Y be topological spaces and let f : X → Y be contin-
uous. Let A ⊂ X. Then

(a) f(A)
◦ ⊂ f(A◦);

(b) f(A)
� ⊂ f(A�).

Proof. Let y ∈ f(A)
◦
. Then y ∈ f(A), so y = f(x) for some x ∈ X. Also

there exists an open set V in Y such that y ∈ V ⊂ f(A). Since f is continuous,
f−1(V ) ⊂ A is an open neighborhood of x contained in A, so x ∈ A◦, and y ∈ f(A◦).
Therefore f(A)

◦ ⊂ f(A◦); this proves (a).

Let y ∈ f(A)
�

). Then y ∈ f(A), and there exists an open neighborhood V of

y in Y such that V ∩ (f(A) r {y}) = ∅. Then f−1(V ) ∩ A = {y}, so y ∈ f(A)
�

.

Therefore f(A)
� ⊂ f(A�); this proves (b). �

2.2. Open and Closed Maps.

Definition 16. Let X and Y be spaces and let f : X → Y .
We say that f is open if for every open set U ⊂ X, f(U) ⊂ Y is open.
We say that f is closed if for every closed set F ⊂ X, f(F ) ⊂ Y is closed.

Proposition 22. Let X and Y be topological spaces and let f : X → Y be a
function. Let B be a basis for X. If f(B) is open in Y for every B ∈ B, then f is
an open map.

Proof. Let U ⊂ X be open. Then U = ∪α∈IBα for some collection {Bα ∈ B | α ∈
I} of basis sets. Thus f(U) = f(∪α∈IBα) = ∪α∈If(Bα); since f(Bα) is open for
every α ∈ I, then so is f(U). �

Example 7. Let X = {(x, y) ∈ R2 | x = 0 or y = 0} and let Y = R. Let
f : X → Y by f(x, y) = x. Then f is a surjective continuous closed map which is
not open. It is not open because, for example, the set {(0, y) | y ∈ (1, 2)} is open
in X but projects onto a point in R.

Example 8. Let X = R and Y = {(x, y) ∈ R2 | x2 + y2 = 1}. Define f : X → Y
by f(x) = (cosx, sinx). Then f is a surjective continuous open map which is not
closed. It is open because it is open on a basis for the topology of R consisting of
open intervals whose width is less than 2π. It is not closed because, for example, the
set {x ∈ R | x = 2πn+ π

2n} is closed in X but its image in Y has an accumulation
point (1, 0) which is not in the image.

Definition 17. Let X and Y be spaces and let f : X → Y . We say that f is
bicontinuous if it is both open and continuous.

Proposition 23. Let f : X → Y be a bijective function between spaces. Then f is
open if and only if f−1 is continuous.

2.3. Homeomorphisms.

Definition 18. Let X and Y be spaces. A homeomorphism between X and Y is
a function f : X → Y which is bijective, open, and continuous. If there exists a
homeomorphism between X and Y , we say that X and Y are homeomorphic.

Proposition 24. Let (X, S) and (Y,T) be topological spaces. Then X and Y are
homeomorphic if and only if there exists an inclusion preserving bijection between
S and T.
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Proposition 25. The empty space is unique. Up to homeomorphism, a one point
space is unique.

Proposition 26. Let S = {0, 1} and T = {∅, {0}, S}. Then T is a topology on S
and (S,T) is called the Sierpinski space.

Proposition 27. Up to homeomorphism, there are exactly three spaces with two
elements.

Proof. Let X = {a, b}. The trivial space and the discrete space on X are clearly
distinct.

The only other possibilities for a topology on X are Ta = {∅, {a}, X} are Tb =
{∅, {b}, X}. Permuting a and b is a homeomorphism between (X,Ta) and (X,Tb).

�

Remark 11. In the above notation, sending a to 0 and b to 1 is a homeomorphism
between (X,Ta) and the Sierpinski space. Homeomorphisms preserve all properties
relevant to topology. For this reason, (X,Ta) and (X,Tb) may also be called the
Sierpinski space.

3. Subspaces, Products and Quotients

3.1. Subspaces.

Definition 19. Let (X,T) be a topological space and let Y ⊂ X.
The subspace topology relative to Y is collection of subsets of Y

T(Y ) = {U ∩ Y | U ∈ T}.

Proposition 28. Let (X,T) be a topological space and let Y ⊂ X.
Then (Y,T(Y )) is a topological space, called a subspace of (X,T). The open sets
of (Y,T(Y )) are called relatively open in X and the closed sets are called relatively
closed in X.

Remark 12. Every subspace of a trivial, discrete, cofinite, or cocountable space
is respectively trivial, discrete, cofinite, or cocountable.

Proposition 29. Let (X,T) be a topological space and let Y ⊂ X. Then T(Y ) ⊂ T

if and only if Y ∈ T.

Definition 20. Let X be a space and let Y be a subspace of X. Then the map
i : Y → X defined by y 7→ y is called the inclusion map.

Proposition 30. Let X be a space and let Y be a subspace of X. Then the inclusion
map i : Y → X is continuous.

Definition 21. Let X and Y be spaces and let f : X → Y .
We say that f is relatively open if for every open U ⊂ X, f(U) is relatively open

in f(X).
We say that f is an embedding if f is injective, continuous, and relatively open.

Proposition 31. Let f : X → Y be an embedding. Then X is homeomorphic to
the subspace f(X) ⊂ Y .
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3.2. Products.

Definition 22. Let X be a nonempty family of topological spaces and let ×X be
their Cartesian product. For X ∈ X, let πX be the projection from ×X onto X.

Let S = {π−1X (U) | X ∈ X and U open in X}. Then 〈S〉 is called the product
topology on ×X.

A cartesian product of a family of spaces endowed with the product topology is
called the product space of the family.

Proposition 32. The product of a family of trivial spaces is trivial. The product
of a family of discrete spaces is discrete if and only if the family is finite.

Proposition 33. Let X = {Xα | α ∈ A} be a nonempty family of spaces and let
B be the set of cartesian products of one open set from each space such that all
but finitely many of these open sets are the entire space. Then B is a basis for the
product topology on ×X.

Proposition 34. Let X be a family of spaces and let ×X be endowed with the
product topology. Then for every X ∈ X, the projection function πX : ×X → X is
continuous.

Proposition 35. Let X be a family of spaces and let ×X be the cartesian product
endowed with some topology. Suppose that for every X ∈ X, the projection function
πX : ×X → X is continuous. Then the topology on ×X is at least as fine as the
product topology.

3.3. Quotients.

Definition 23. Let (X,T) be a topological space, Y a set, and q : X → Y a
surjective function. Let V = {V ⊂ Y | f−1(V ) ∈ T}. Then V is a topology on Y ,
called the quotient topology on Y induced by q. The function q is called the or the
quotient projection of X onto Y .

Proposition 36. A quotient projection in continuous.

Proposition 37. The quotient topology is the finest topology such that the quotient
projection is continuous.

Proposition 38. Let X be a family of topological spaces and let ×X be the product
space. For X ∈ X, let πX : ×X → X be the cartesian projection. Then X is
endowed with the quotient topology induced by πX .

4. Connectedness

4.1. Clopen Sets.

Definition 24. Let X be a topological space and let A ⊂ X.
We say that A is clopen if A is both open and closed.

Proposition 39. Let X be a topological space and let A ⊂ X. Then A is clopen if
and only if for every c ∈ A there exists a neighborhood U of c such that U ⊂ A.
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4.2. Separation.

Definition 25. Let X be a space and let A,B ⊂ X.
We say that A and B are separated if there exist disjoint open sets U, V ⊂ X

such that A ⊂ U and B ⊂ V . This relationship is denoted A|B. The pair (U, V ) is
called a separation of (A,B).

Proposition 40. In a trivial space two sets are separated if and only if one of them
is empty. In a discrete space two sets are separated if and only if they are disjoint.
In a cofinite space two nonempty sets are separated if and only if they are disjoint
and finite.

Proposition 41. Let X be a space and let A,B ⊂ X. Then A|B if and only if
A ∩B = A ∩B = ∅.

Proof.
(⇒) Let (U, V ) be a separation of (A,B). Then for any b ∈ B, V is a neigh-

borhood of b which is disjoint from A. Thus b in not in A. Similarly, A does not
intersect B.

(⇐) Suppose A ∩ B = A ∩ B = ∅. Let U = X r B and V = X r A. Then U
and V are open and form a separation of A and B. �

Proposition 42. Let X be a space with subsets A, B, and C. Then

(a) ∅|A;
(b) A|B ⇒ B|A;
(c) A|B and C ⊂ A ⇒ C|B;
(d) A|B and A|C ⇒ A|(B ∪ C);

Proposition 43. Let X be a space and let A,B ⊂ X. The following conditions
are equivalent:

i. A|B;
ii. A and B are disjoint relatively closed subsets of A ∪B;
iii. A and B are disjoint relatively open subsets of A ∪B.

Proof.
(i)⇒(ii) Suppose A∩B = A∩B = ∅. Since A ⊂ A, A and B are disjoint. Since

no point in B is in the closure of A, every point in B has a neighborhood which
is disjoint from A. Let V be the union of these neighborhoods. Then V is open,
B ⊂ V , and V ∩ A = ∅. Similarly there exists and open set U such that A ⊂ U
and U ∩B = ∅. Then U ∩A = A is relatively open in A∪B and so is V ∩B = B.

(ii)⇒(iii) Suppose that A and B are disjoint relatively closed sets in A∪B. Then
A ∪B rB = A and A ∪B rA = B are relatively open.

(iii)⇒(i) Suppose that A and B are disjoint relatively open sets in A∪B. Then
there exist open sets U, V ⊂ X such that A ⊂ U , B ⊂ V , and A∩ V = B ∩U = ∅.
Then no point of A is in the closure of B and vice versa. Thus A ∩ B = A ∩ B =
∅. �

4.3. Connectedness.

Definition 26. Let X be a space and let A ⊂ X.
We say that A is separated if it is the union of two nonempty separated sets, and

A is connected if it is not separated.
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Proposition 44. Every subset of a trivial space is connected. A subset of a discrete
space is connected if and only if it contains at most one element.

Proposition 45. Let X be a space. The following conditions are equivalent.

i. X is connected;
ii. X is not the disjoint union of two nonempty open sets;

iii. X is not the disjoint union of two nonempty closed sets;
iv. if A ⊂ X is nonempty and clopen, then A = X.

Proof. (i)⇒(ii) Suppose that X = U ∪V with U, V open and disjoint. Then U and
V are neighborhoods of the points they contain, and form a separation.

(ii)⇒(iii) Suppose that X = C∪F with C,F closed and disjoint. Let U = XrF
and V = X r C. Then U and V are open and disjoint and their union is X.

(iii)⇒(iv) Let C be a proper nonempty subset of X which is clopen. Then
F = X r C is closed.

(iv)⇒(i) Suppose X is not connected. Then X is the union of nonempty sepa-
rated sets A and B. Let (U, V ) be a separation of (A,B). Then A ⊂ U , B∩U = ∅,
and A ∪B = X together imply that X = U ∪B. Thus B is closed. Similarly, A is
closed so B is also open. �

Proposition 46. Let X be a space and let A,B,C ⊂ X. Suppose that A|B, C is
connected, and C ⊂ A ∪B. Then C ⊂ A or C ⊂ B.

Proposition 47. Let Q be a collection of connected subsets of a space X and C a
connected subset of X which is not separated from any member of Q. Then C∪(∪Q)
is connected.

Proof. Let Y = C ∪ (∪A) and suppose that Y = A ∪ B for some separated sets A
and B. Thus C ⊂ A or C ⊂ B. Suppose, without loss of generality, that C ⊂ A.
Then for Q ∈ Q, since Q is connected, Q ⊂ A or Q ⊂ B. If Q ⊂ B, then C|Q,
contrary to our hypothesis. Thus Q ⊂ A. Thus A = Y and B = ∅. Thus Y is
connected. �

Corollary 2. Let Q be a collection of connected subsets of a space X. If ∩Q is
nonempty, then ∪Q is connected.

Proposition 48. Let C be a connected subset of a space X and suppose that C ⊂
A ⊂ C. Then A is connected. In particular, C is connected.

Proof. Let U and V be disjoint open sets such that A ⊂ U ∪ V . Then C ⊂ U
or C ⊂ V . Suppose, without loss of generality, that C ⊂ U . If a ∈ A ∩ V , then
V is a neighborhood of a which is disjoint from C and a /∈ C, contradicting our
hypothesis. Thus A ⊂ U , and A cannot be separated. �

Proposition 49. The continuous image of a connected set is connected.

Proof. Let f : X → Y be a continuous function Let C ⊂ X and let D = f(C).
Suppose that D ⊂ f(X) ⊂ Y is not connected. Then there exist disjoint open sets
V1, V2 ⊂ Y such that V1 ∩ D and V2 ∩ D are nonempty. Then U1 = f−1(V1) and
U2 = f−1(V2) are disjoint open sets in X and U1 ∩ C and U2 ∩ C are nonempty.
This implies that C is not connected. �

Proposition 50. Let X be a family of spaces and let ×X be the Cartesian prod-
uct endowed with the product topology. If every X ∈ X is connected, then ×X is
connected.
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4.4. Components.

Proposition 51. The connected subsets of a space X are partially ordered by in-
clusion.

Definition 27. A component of a topological space is a maximal connected subset.

Proposition 52. The only component of a connected space is the space itself. The
components of a discrete space are the singleton sets.

Proposition 53. The components of a space partition the space.

Proof. Let x ∈ X and let C be the union of all connected subsets of X which
contain x. Then C is connected and is clearly maximal. Thus X is the union of its
components.

Let D be another component of X. If C∩D is nonempty, then C∪D is connected,
and by the maximality of C, D = C. �

Proposition 54. If C is a component of a space X, then C is closed.

Proof. Since C is connected, so is C. Since C ⊂ C and C is a maximal connected
set, C = C. �

Proposition 55. Two distinct components of a space are separated.

Proof. Let C and D be components of a space X and suppose that they are not
separated. Then C ∩D or C ∩D is nonempty. Suppose, without loss of generality,
that C ∩D is nonempty and let x ∈ C ∩D. Since C = C, x ∈ C. Thus x ∈ C ∩D
so C = D. �

Proposition 56. If C is a component of a space X and C ⊂ Y ⊂ X, then C is a
component of the subspace Y .

4.5. Dedekind Property.

Definition 28. An ordered set X has the Dedekind property provided that for
each decomposition X = A∪B, where A and B are nonempty and a < b whenever
a ∈ A and b ∈ B, either A contains a maximal element or B contains a minimal
element, but not both.

Proposition 57. A nonempty connected subset of an ordered space is infinite.

Proposition 58. An ordered space is connected if and only if it has the Dedekind
property.

Corollary 3. Intervals of real numbers are connected.

4.6. Path Connectedness.

Definition 29. Let X be a space. Let I = [0, 1] be the unit interval in R. A path
in X is a continuous function γ : I → X. The points a = γ(0) and b = γ(1) are
called the endpoints of the path, and γ is referred to as a path between a and b.

Definition 30. A space X is path connected if for every two points in X there is
a path between them.
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Proposition 59. If X is path connected, then X is connected.

Proof. Suppose X is not connected. Then there exist disjoint nonempty open sets
U, V ⊂ X such that U ∪ V = X. Let a ∈ U and b ∈ V . Suppose γ is a path
from a to b Then the image of γ is connected because I is. But U ∩ γ(I) and
V ∩ γ(I) are disjoint and relatively open in γ(I), so γ(I) is separated, producing a
contradiction. �

Example 9. Let X = {(x, y) ∈ R2 | x ∈ [0, 1] ∩ Q and y ∈ [0, 1]}. Then X is
connected but not path connected.

5. Compactness

5.1. Covers.

Definition 31. Let X be a space and A ⊂ X. A cover of A is a collection of sets
E ⊂ P(X) such that A ⊂ ∪E. If each set E ∈ E is open, then E is called and open
cover. If only finitely many sets are in E, then E is called a finite cover. Notice that
the word finite applies to E whereas the word open applies to the sets in E.

If E is a cover of A, a subcover of E is a subset of E which is itself a cover.
The set A is compact if every open cover of A contains a finite subcover.

Proposition 60. The compact subsets of a discrete space are the finite subsets. In
a trivial space or a cofinite space, every subset is compact.

Proposition 61. Finite subsets of any space are compact.

Definition 32. Let X be a space and let A ⊂ X. A basis cover of a A is a cover
by members of a fixed basis for the topology on X.

Proposition 62. Let X be a space and A ⊂ X. Then A is compact if and only if
every basis cover of A contains a finite subcover.

Proof. The forward direction is immediate, because a basis cover is an open cover.
For the other direction, let B be a basis and suppose that every cover of A by

members of B has a finite subcover. Let U be an open cover of A. Then each
member of U ∈ U is the union of members of B. Let EU be a collection of basis
sets such that ∪EU = U . Let E the be union of these collections. Then E is a basis
cover and thus has a finite subcover D. Each set in D is contained in one of the
original open sets in U; the collection of these sets is now a finite subcollection of
U which covers A. �

Definition 33. Let X be a space, E ⊂ P(X), and Y ⊂ X. The relative collection
of E on Y is

E ∩ Y = {E ∩ Y | E ∈ E}.

Proposition 63. If X is a space and A ⊂ Y ⊂ X, then A is compact in X if and
only if A is compact with respect to the subspace topology on Y .

Proof. Let U ⊂ P(X) be an open cover of A. Since A ⊂ Y , U ∩ Y is an open cover
of A in Y , and all such covers are of this form. Let V ⊂ U so that (V∩Y ) ⊂ (U∩Y ).
Then V covers A if and only if V ∩ Y covers A. �
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Proposition 64. A closed subset of a compact set is compact.

Proof. Let X be a space and let K be a compact subset of X. Let F ⊂ K be
closed. Let U be an open cover of F . Then U ∪ {X r F} is an open cover for K
and thus has a finite subcover. If X r F is in this subcover of K, remove it; now
we have a finite subcover of F . �

Proposition 65. The continuous image of a compact set is compact.

Proof. Let f : X → Y be a continuous function and let K ⊂ X be compact. Let V

be an open cover of f(K). Let U = {f−1(V ) | V ∈ V}. Then U is an open cover
of K, and has a finite subcover M. Suppose |U| = n, and enumerate U so that
U = {Ui | i = 1, . . . , n}. For each i, select Vi ∈ V such that Ui = f−1(Vi). Let
W = {Vi | i = 1, . . . , n}. Then W ⊂ V is a finite subcover of f(K). �

Proposition 66. Let X be a family of spaces and let ×X be the Cartesian product
endowed with the product topology. If every X ∈ X is compact, then ×X is compact.

5.2. Finite Intersection Property.

Definition 34. Let C be a collection of sets. We say that C has the finite inter-
section property if for every D ⊂ C,

|D| <∞⇒ ∩D 6= ∅.

Proposition 67. A space X is compact if and only if every collection of closed
subsets of X with the finite intersection property has nonempty intersection.

Proof.
(⇒) Let F be a collection of closed sets in X with the finite intersection property

but empty intersection. Then U = {X r F | F ∈ F} is an open cover for X. Let
V ⊂ U be a finite subcollection. Then C = {XrV | V ∈ V} is a finite subcollection
of F and so has nonempty intersection. Since ∪V = X r∩C, V is not a cover for X
so X is not compact.

(⇐) Suppose that X is not compact and let U be an open cover with no finite
subcover. Let F = {X r U | U ∈ U}. Let C ⊂ F be a finite subcollection and let
V = {X r C | C ∈ C}. Then ∩C = X r ∪V and since V does not cover X, ∩C
is nonempty. Thus F has the finite intersection property, but since U covers X,
∩F = ∅. �

5.3. Sequential Compactness.

Definition 35. A space is called sequentially compact if every sequence of points
in X has a cluster point.

Proposition 68. A space is sequentially compact if and only if every sequence of
distinct points has a cluster point.

Proposition 69. A space is sequentially compact if and only if every infinite subset
has an accumulation point.

Remark 13. There exist compact spaces which are not sequentially compact, and
there exist sequentially compact spaces which are not compact. However, in a
metric space, the notions are equivalent.
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6. Separation

6.1. Separation Axioms.

Definition 36. The following conditions on a topological space X are known as
separation axioms:
T0: Given two points in X, at least one of them lies in an open set not containing
the other.
T1: Given two points in X, each of them lies in an open set not containing the
other.
T2: Given two points in X, there exist disjoint open sets, each containing exactly
one of the points.
T3: Given a point and a closed set in X not containing the point, there exist dis-
joint open sets, one containing the point and one containing the closed set.
T4: Given two disjoint closed sets in X, there exist disjoint open sets, each con-
taining exactly one of the closed sets.
T5: Given two subsets A,B ⊂ X with (A ∩B) ∪ (A ∩B) = ∅, there exist disjoint
open sets, each containing exactly one of the subsets.

We say that X is a Tn space if X satisfies the Tn axiom for n = 0, 1, 2, 3, 4, 5.

Proposition 70. The separation axioms are hierarchical in the following sense:

T5 + T1 ⇒ T4 + T1 ⇒ T3 + T1 ⇒ T2 ⇒ T1 ⇒ T0.

Proposition 71. The product of a family of Tn spaces is a Tn space for n =
0, 1, 2, 3.

Proposition 72. A nonempty trivial space is not a T0 space but is T3 and T4.

Proposition 73. The natural numbers with the right order topology are a T0 space
but not a T1 space.

Proposition 74. The Sierpinski space is a T0 space which is not a T1 space.

Proposition 75. An infinite cofinite space is a T1 space but not a T2, T3, nor a
T4 space.

Proposition 76. Discrete spaces are T5 spaces.

6.2. Closed Point Spaces.

Definition 37. A T1 space is called a closed point space.

Proposition 77. A space X is a T0 space if and only if {x} = {y} ⇒ x = y for
all x, y ∈ X.

Proposition 78. A space X is a T1 space if and only if all of the singleton subsets
of X are closed.

Proposition 79. A space X is a T1 space if and only if all of the finite subsets of
X are closed.

Proposition 80. A space X is a T1 space if and only if singleton sets are equal
to the intersection of all neighborhoods containing them.
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6.3. Hausdorff Spaces.

Definition 38. A T2 space is called a Hausdorff space.

Proposition 81. A space X is a Hausdorff space if and only if singleton sets are
equal to the intersection of all closed neighborhoods containing them.

Proposition 82. A space X is a Hausdorff space if and only if for every pair of
disjoint compact sets K1,K2 there exist disjoint open sets U1, U2 such that K1 ⊂ U1

and K2 ⊂ U2.

Proposition 83. A compact subset of a Hausdorff space is closed.

Proof. Let X be a Hausdorff space and K a compact subset of X. Let y ∈ X rK
and for each x ∈ K, let Ux and Vx be disjoint open sets such that x ∈ Ux and y ∈ Vx.
Then sets {Ux | x ∈ K} cover K and thus have a finite subcover {Ux1 , . . . , Uxn}.
Then Vy = ∩ni=1Uxi

is an open neighborhood of y which is disjoint from K. The
complement of K in X is the union of all such sets, and is therefore open. Thus K
is closed. �

Proposition 84. If X is a Hausdorff space then every sequence in X which has a
limit point converges.

Proof. Let X be a Hausdorff and let x : N → X be a sequence in X which has a
limit point p. Let q ∈ X. If p and q are distinct, there exist disjoint neighborhoods
of p and q, and x is eventually in the neighborhood of p, and so is not eventually
in the neighborhood of q. Therefore q is not a limit point. �

Proposition 85. Let X be a compact space and Y a Hausdorff space. Let f : X →
Y be continuous and bijective. Then f is a homeomorphism.

Proof. It suffices to show that f is an closed map. Since X is compact, every closed
subset of X is compact. Its image in Y is compact because f is continuous. Since
Y is Hausdorff, this image is closed. �

Proposition 86. If X is a space, Y is a Hausdorff space, and f : X → Y is
continuous, then the set D = {(x, f(x)) | x ∈ X} is a closed subset of X × Y .

Proof. Let Z = X × Y and let (x, y) ∈ Z r D. Since Y is Hausdorff, there exist
disjoint open neighborhoods U of f(x) and V of y. Since f−1(U) contains x and

is disjoint from f−1(V ), x is not a limit point of f−1(V ) and so x /∈ f−1(V ). Let

O = f−1(U)rf−1(V ). Then O is an open set containing x so (x, y) ∈ O×V . Also
O × V is disjoint from D.

This shows that very point is the complement of D is contained in an open set
disjoint from D. Therefore D is closed. �

Corollary 4. A space X is Hausdorff if and only if the diagonal of X×X is closed.

Proof. Suppose X is Hausdorff. Then the identity map on X is continuous, so
D = {(x, id(x)) | x ∈ X} = {(x, x) | x ∈ X} is closed.

Let X be a space and suppose that D = {(x, x) | x ∈ X} is closed. Then for
y 6= x there exists of basis neighborhood U × V of (x, y) such that U × V ∩D = ∅,
where U and V are open subsets of X with x ∈ U and y ∈ V .

Since (x, x) /∈ U × V , x /∈ V . Since (y, y) /∈ U × V , y /∈ U . Thus X is
Hausdorff. �
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6.3.1. The Tube Lemma. We prove the following:

Proposition 87. Let X and Y be topological spaces, with Y compact and Haus-
dorff. Let f : X → Y . Then f is continuous if and only if the graph of f is
closed.

Definition 39. Let X and Y be topological spaces and let x0 ∈ X. The fiber over
x in X × Y is the set {x} × Y . A tube over x in X × Y is a set of the form A× Y ,
where x ∈ A ⊂ X.

Lemma 1 (Tube Lemma). Let X and Y be topological spaces, with Y compact.
Let x ∈ X and let G be an open subset which contains the fiber over x. Then G
contains an open tube over x.

Proof. Sets of the form U × V , where U is open in X and V is open in Y , form a
basis for the topology of X × Y . Thus G is the union of such sets.

For each y ∈ Y , select a basis neighborhood Uy × Vy ⊂ G of (x, y) in the fiber
over x. The Vy form a cover of Y , and thus have a finite subcover V1, . . . , Vn; let
U1, . . . , Un be the corresponding subsets of X so that Ui×Vi cover the fiber over x.
Let U = ∩ni=1Ui; then U is open in X and contains x. Now ∪ni=1U×Vi = U×Y ⊂ G
is a tube over x which is contained in G. �

Lemma 2. Let X and Y be topological spaces, with Y compact. Then the projection
πY : X × Y → Y given by (x, y) 7→ y is a closed map.

Proof. Let F ⊂ X × Y be a closed set in X × Y , and let x ∈ X r f(F ). Since the
complement of F in X×Y is an open set which contains the fiber over x, it contains
a tube over x. The projection of this tube onto X is an open set containing x which
is disjoint from f(F ). Thus the complement of f(F ) in X is open. �

Proposition 88. Let X and Y be topological spaces, with Y compact. Let f : X →
Y be a function whose graph is closed. Then f is continuous.

Proof. It suffices to show that the inverse image of a closed set is closed. Let C be
a closed set in Y . Since projection is continuous, π−1Y (C) is closed in X×Y . Let F
be the intersection of this inverse image with the graph of f . Then F is closed in
X × Y . Since Y is compact, the projection πX is a closed map, so πX(F ) is closed
in X. But πX(F ) = f−1(C). �

Lemma 3. Let X and Y be topological spaces. Let f : X → Y be a continuous
function. Let g : X → X × Y be the function given by x 7→ (x, f(x)). Then g is
continuous.

Proof. LetG be an open set inX×Y . IntersectionG with the graph of f if g−1(G) is
empty, then it is open, so assume that it is nonempty and let x ∈ g−1(G). Let U×V
be a basis neighborhood of (x, f(x)) which is contained in G. Then f−1(V )∩πX(G)
is open in X, x ∈ f−1(V )∩πX(G), and f−1(V )∩πX(G) is contained in g−1(G). �

Proposition 89. Let X and Y be topological spaces, with Y Hausdorff. Let f :
X → Y be a continuous function. Then the graph of f is closed.

Proof. Let F be the graph of f . Let (x, y) ∈ X × Y r F . Then y 6= f(x); let V1
and V2 be open neighborhoods in Y of y and f(x) respectively which are disjoint.
Let g : X → X × Y be the map given by x 7→ (x, f(x)). Then U = g−1(X × V2) is
open in X, and U × V1 is an open neighborhood of (x, y) which does not intersect
F . Thus the complement of F is open. �
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6.4. Regular Spaces.

Definition 40. A T3 space which is also a T1 space is called regular.

Proposition 90. A space X is regular if and only if every neighborhood of a point
in X contains a closed neighborhood.

Proposition 91. A space X is a regular space if and only if for every pair of
disjoint sets K,F such that K is compact and F is closed there exist disjoint open
sets U, V such that K ⊂ U and F ⊂ V .

Proposition 92. A compact Hausdorff space is regular.

6.5. Normal Spaces.

Definition 41. A T4 space which is also a T1 space is called normal.

Proposition 93. A space X is normal if and only if for every closed set F in
X and every open set U in X containing F there exists an open set V such that
F ⊂ V ⊂ V ⊂ U .

Proposition 94. A compact regular space is normal.
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